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Appendix E – Certification Test Plan for AFC/MFC Test Stand 

1. Introduction 
This document describes the certification test plan to qualify the new AFC/MFC test stand (hereinafter 
referred to as New Stand), to be located in Building 3907 Fuel Accessories Testing shop, and to perform 
and meet the production testing requirements of all listed Units Under Test (UUTs) per applicable 
T.O.(s). Note certain items will run a “Full” correlation process while others will run a “Functional” 
correlation process. 
 
The New Stand will be correlated to prove that performance meets, or exceeds, the existing production 
test stands and applicable T.O. requirements. The New Stand will be approved for production testing of 
the End Items listed in Table 1 if the Master Stand data and the New Stand data correlate as follows 

2. Full Correlation Process 

2.1 Master Stand and New Stand data full correlate procedure is as follows: 

2.1.1 The final acceptance test will be run at least three (3) times, per T.O., on the Master Stand to 
obtain correlation data. Data will be checked for outliers utilizing the Weisberg t-Test. See 
section 2.2 below for a brief description of testing for outliers. If an outlier is found, results 
from an additional run will be utilized to ensure that three samples are available for each test 
point. If an outlier is still indicated, it will be considered normal data scatter and all four runs 
will be used in the 95% confidence interval analysis. 

2.1.2 Repeat the steps in section 2.1.1 above but testing on the New Stand instead. 

2.1.3 Correlation between the two data sets will be analyzed utilizing the MOSI Method with 
confidence intervals of 95%. See section 2.3 below for a brief description of analysis method. 
See Attachment 4 for detailed description of analysis method. 

2.1.4 The results from the full correlation methods will be documented in an Excel spreadsheet. 
See Attachment 1 for an example Certification Test Worksheet. 

Table 1 - UUTs to be Full Correlation Tested 

UUT Part number Technical Order 
F100-220 AFC 441422-7 6J3-2-34-2-2 
F100-229 AFC 790100 6J3-2-36-3 
F100-220 MFC 441610-21 6J3-4-118-2-2 
F100-220 MFC 441396-21 6J3-4-118-2-2 
F100-220 MFC 442645-23 6J3-4-118-2-2 

F100-229 MFC 441721-10 6J3-4-118-2-2 
PS2 Computer Bracket (for 220 MFC) (Component) 6J3-4-118-2-2 

2.2 Weisberg t-Test for Outliers 
All correlation data will be tested for Outliers at an Alpha Error Rate of 5%. All data will be checked for 
outliers at the time of data generation from the test stand and at the time of data correlation. See 
Attachment 3 for additional information. 

2.3 Mosi Method 
The Mosi Method for comparing two means with a 95% Confidence interval involves the following steps 
(See Attachment 4 for additional information): 
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 Average the three samples from each stand 

 Calculate the Standard Deviation of the three samples from each stand 

 Calculate the 95% confidence intervals for each mean of stands 
 
The data from each stand is statistically comparable if the intervals overlap such that each interval 
overlaps with the mean value of the other interval as shown in the diagram below. In our case there is a 
potential bias that must be taken into account to properly apply the MOSI technique. This bias is the 
measurement uncertainty of the test stand instrument. 

2.4 Example 
Test stand A measures an average flow (3 readings) of 960 pph and Test stand B measures an average 
flow (3 readings) of 1040 pph. The measurement uncertainty for the flow measurement is ± 50 pph. For 
test stand A we can state the true average flow measurement is between 910 and 1010 pph and for test 
stand B we can state the true average flow measurement is between 990 and 1090 pph. Due to this bias 
we must include the measurement uncertainty as a range of acceptable mean values to properly apply 
the MOSI technique. This is graphically displayed on the following page. 

3. Functional Correlation Test 

3.1 Master Stand and New Stand data functional correlate procedure is as follows: 

3.1.1 The final acceptance test will be run one (1) time, per T.O., on the Master Stand to obtain 
baseline data. Data will be checked for failing test point outliers. If an outlier is found, results 
from an additional run will be utilized to ensure UUT is at or close to A-Condition. If an outlier 
is still indicated, it will be considered best case and final run will be used in the analysis. 

3.1.2 Repeat the steps in section 3.1.1 above but testing on the New Stand instead. 

3.1.3 The results from the functional correlation method will be documented in an Excel 
spreadsheet. See Attachment 1 for an example Certification Test Worksheet. 

Table 2 - UUTs to be Functional Correlation Tested 

UUT Part number Technical Order 
LRU-AFC Fill Switch Module 351014A 6J3-2-34-8-1 

LRU-AFC Core Resolver (Component) 6J3-2-34-8-1 
LRU Sequencing Resolver 351019A 6J3-2-34-8-1 

AFC Reset Manifold 2671164 6J3-2-34-8-1 
AFC Resolver Assembly 351013 6J3-2-34-8-1 

F100 PLA Resolver 351006 6J3-4-118-2-2 
F100 MV Resolver 351007 6J3-4-118-2-2 

PS2 Computer Bracket (for 220 MFC) (Component) 6J3-4-118-2-2 

PLA Rate Limiter (for 220 MFC) (Component) 6J3-4-118-2-2 

High Pressure Body (for 220 MFC) (Component) 6J3-4-118-2-2 

4. Test Report 
After the correlation data runs are completed a preliminary test report will be submitted to Government 
Technical POC. The System Program Office Cognizant Engineering Authority will also be provided the 
test report for review. Following Cognizant Engineering Authority approval, contractor will be notified of 
approval of the New Stand. See Attachment 2 for an example Certification Test Report. 
 



SOW-2022-AFC/MFC Test Stand  15 April 2022 

Page | 3  
 

5. Attachments 
Attachment 1 
Example Certification Testing Worksheet Example.xls 
 
Attachment 2 
Example Certification Test Report.pdf 
 
Attachment 3 
Weisberg-t Test for Outliers.pdf 
T-Distribution Table.pdf 
Analysis of two data samples using the MOSI Method.pdf 
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Test Condition 7.10(b) 1.000 PR (062JA | MA) psig 950 1050 1000 ±10.00 1005 1003 1003 1001 1001 998 1001 964 998 967
Test Condition 7.10(b) 1.000 PB1 (062JC | NB) psig 90 110 100 ±0.5 96 101 98 96 97 100 102 100 103 99
Test Condition 7.10(b) 1.000 CDP (060MA|SA|PA) psig 365 375 370 ±0.8 368 370 369 371 368 370 370 370 370 370
Test Condition 7.10(b) 1.000 P5 (062PA | VA) psig 185 205 195 ±5.0 196 196 202 202 198 190 188 191 196 197
Test Condition 7.10(b) 1.000 P6 (062PB | VB) psig 195 245 220 ±5.0 197 244 233 244 215 216 220 219 226 244
Test Condition 7.10(b) 1.000 P7 (062PC) psig 165 215 190 ±5.0 195 207 170 190 182 194 201 196 184 176
Test Condition 7.10(b) 1.000 PC (062JB | NA) psig 275 295 285 ±0.5 287 287 295 287 282 288 290 288 282 280
Test Condition 7.10(b) 1.000 Torque Motor Current mA -5.0 0.0 -2.5 ±0.1 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0

Test Result 7.10(b) 1.000 Feedback Volt/Volt Rdg v/v 0.4035 0.4065 0.4050 ±0.001 0.4060 0.4059 0.4060 0.4059 0.4060 0.4060 0.4050 0.4070 0.0001 0.4049 0.4071 Pass No OK 0.4064 0.4063 0.4042 0.4061 0.4041 0.4050 0.4040 0.4060 0.0012 0.4025 0.4075 Pass No OK

  Modified Stand   (3C3973G03-0C002/0403)Test Point Information

T.O. Number 6J3-2-33-3

C/N

Test Specification/Paragraph/Table Log Sheets:  T.O. Section 7.10 (b)

Test Mechanic

Production Engineer

Test Dates

  Master Stand  (3C3973G03-0C001/0303)

Metering Valve Minimum Stop (Core Cut-In Overlap)

P/N and S/N

Part Name Augmenter Fuel Control

Correlation Worksheet

Equipment Specialist Kenneth Ham/736-3482

Cognizant Engineer Mike Babb/736-3517
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 Test Stand Type 

PN: XXXX 
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(Part Type) Certification Test Report 
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Introduction 

This document briefly describes the certification test reports testing results for qualifying the XXX Test 
Stand, located in Building XXXX.   

Background 

The new (Test Stand Type) Test Stand (part number) was delivered under contract # XXXXX. 

System Overview 

General description of equipment and basis of design. 

System Calibration and Accuracies 

Test Stand calibration will be performed and certified by Tinker PMEL Technicians IAW T.O. 00-20-14.  
Calibration accuracies are identical to P/N XXXX. 

Part Number For Correlation Testing  

The Part Number listed in TABLE 1 was utilized for the correlation study. 

TABLE 1   Part Number Used For Correlation Testing 

Part Number Noun T.O. Test Type 

XXX XXX XXX XXX 

XXX XXX XXX XXX 

Correlation Process 

1. A serviceable (part type(s)) listed in TABLE 1 was run five times on the Master Test Stand (test
stand part #) to obtain baseline correlation data. The augmenter fuel controller was then run five
times on the New Test Stand (test stand part #) and data recorded.

2. Data results were checked for outliers utilizing the Weisberg t-Test (See Attachment M –
Statistical Correlation and Validation Method).  If an outlier was flagged by the t-Test an
additional run was made and replaced the outlier. If an outlier was still indicated after replacing
the suspected outlier data point, it was considered normal data scatter and all six runs were
used in developing the 95% confidence interval analysis.

3. The results from the correlation methods were documented in Excel spreadsheets.  (See
Attachments A thru L – (Part Type) Correlation Worksheets)

4. Correlation between the two data sets was accomplished utilizing the MOSI Method with a
confidence interval of 95%. (See Attachment M – Statistical Correlation and Validation Method).

Signature Sheet 

The undersigned certify XXXX Test Stand, Test Stand Part Number XXXXXXXX meets or exceeds all 
measurement and test requirements of Technical Order XXXXXXX. 
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______________________________ 
Contractor Signature 

______________________________ 
Cognizant Engineer of Part 
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Attachments: 

• Attachments A thru L -  (Part Type) Correlation Worksheets
• Attachment M - Statistical Correlation and Validation Method.pdf



Weisberg t-Test for Outliers 
All correlation data will be tested at an Alpha Error Rate of 5% for Outliers.  All data will be 
checked for Outliers at the time of data generation from the test stand and at the time of data 
correlation.  

Mosi Method 
The Mosi Method (See Attachment 5 for additional information) for comparing two means with a 
95% Confidence interval involves the following steps: 

 Average the three samples from each stand

 Calculate the Standard Deviation of the three samples from each stand

 Calculate the 95% confidence intervals for each mean of stands

The data from each stand is statistically comparable if the intervals overlap such that each 
interval overlaps with the mean value of the other interval as show in the diagram below.  In our 
case there is a potential bias that must be taken into account to properly apply the MOSI 
technique.  This bias is the measurement uncertainty of the test stand instrument.  For example: 

Test stand A measures an average flow (3 readings) of 960 pph and Test stand B 
measures an average flow (3 readings) of 1040 pph.   The measurement uncertainty for 
the flow measurement is ± 50 pph.  For test stand A we can state the true average flow 
measurement is between 910 and 1010 pph and for test stand B we can state the true 
average flow measurement is between 990 and 1090 pph.  Due to this bias we must 
include the measurement uncertainty as a range of acceptable mean values to properly 
apply the MOSI technique. This is graphically displayed below. 
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Example of two stands that are statistically comparable 

Example of two stands that are not statistically comparable 



Confidence intervals

• X at a given confidence level (say 95%) implies

that the true value will be found within X of

the calculated mean

x
t s

N

p v,

x
t s

N
x

t s

N

p v p v, ,

• s = standard deviation between individual values

• t = Student t value at a given probability (See Student T Distribution)

• x = Mean of data samples

• N = Number of Samples



Comparing two means

(unpaired data)  

• Mosi method

– Calculate the confidence interval for each mean

– Compare the confidence intervals

– The results are statistically comparable if the intervals

overlap such that each interval overlaps with the mean

value of the other interval as shown in the diagram

below.
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statistical comparisons are relatively
straightforward. Those data can be used to
set acceptance criteria for validation runs at
a new production scale. 

Control charts. When about 15 lots have
been produced at commercial scale, control
charts — which present a picture of a
process and its variation over time — are
useful for evaluating process stability. Our
choice of 15 lots for calculating control
limits is a balance between the extreme
uncertainty of limits based on few data and
the diminishing value of each new data point
in further decreasing that uncertainty. An
individuals control chart based on 15 lots
has 8.9 effective degrees of freedom (df),
which is sufficient to reduce the uncertainty
in the limits to about �23%. Achieving
�10% uncertainty requires about 45 degrees
of freedom, which requires more than 
70 individual values (1). 

Outlier tests and errors. Until there are 
15 lots, the most useful method to statistically
evaluate a data point that seems to be
anomalous is the Weisberg t-test (2,3). The
Weisberg t-test can be used for data sets
larger than 15 values as well. The other tests
we evaluated for application in small data
sets were the Dixon (4) and the Grubbs (5).
The latter is also known as the Extreme
Studentized Deviate (ESD) (6). The
Weisberg t-test can distinguish between
normal process variation and a process
aberration that yields an outlier. For example,
at an alpha (�) error (calling something an
outlier when it isn’t one) of 0.05, the � error
is only 0.31, and thus the Weisberg t-test is
the most powerful test available for small
data sets among those considered (Figure 1).

Discordant Observations
Until recently, the U.S. Pharmacopeia
(USP) did not address the treatment of
chemical test data containing discordant
observations. Indeed, this “silence” was
interpreted to mean a “prohibition” during

Demonstrating the Consistency 
of Small Data Sets
Application of the Weisberg t-test for Outliers

Determining whether a data 
point is an “outlier” — a result that
doesn’t fit, that is too high or too
low, that is extreme or discordant —
is difficult when using small data
sets (such as the data from three,
four, or five conformance runs). The
authors show that the Weisberg 
t-test is a powerful tool for detecting
deviations in small data sets.

T
he attempt to define an “outlier” has a
long, diverse history. Despite many
published definitions, statisticians in
all fields are still interested in
objectively determining whether a data

point is consistent with the rest of the data
set or is, after all, an outlier, signifying a
deviation from the norm. For
biopharmaceutical companies, the need to
evaluate whether a data point is an outlier —
inconsistent with the rest of a small set of
data — is important in validating process
consistency. 

The power of a statistical tool increases
as sample size (n) increases. So, low power
outlier tests used on small data sets — such
as the production data derived from three to
five conformance runs — have relatively
high beta (�) or Type 2 errors. These errors
mean there is a high chance of leaving
deviant results undetected, making these
tests inappropriate for pharmaceutical or
biopharmaceutical applications.

The z-test is the most powerful outlier test
(the most able to detect a discordant datum) if
the data are normally distributed and the
standard deviation is known or can be
accurately estimated. But z-tests usually
require large data sets. Conformance runs
from early commercial lots usually produce
small data sets, and the standard deviation of
the population is not usually known. We
show, using representative biopharmaceutical
process validation data, that the Weisberg 
t-test is a powerful outlier test at small values
of n. It has a low � error rate in detecting
deviations from the mean. Therefore, the
Weisberg t-test is suitable for objectively
demonstrating consistency of production data.

Process Validation Data
During process validation, process
consistency is typically demonstrated in
three to five conformance runs. When
historical data are available, even if those
data are from a different production scale,

Robert J. Seely, 
Louis Munyakazi, John Haury,
Heather Simmerman, 
W. Heath Rushing, and 
Thomas F. Curry
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the United States v. Barr Laboratories, Inc.
case (7). Judge Wolin’s ruling in that case
indicated the need for such guidance (8), and
in 1999, a new monograph was previewed in
Pharmacopeial Forum (9). That monograph
states that when appropriately used, outlier
tests are valuable tools for analyzing
discordant observations.

The discussions in the Barr case and in
the USP monograph suggest the
appropriateness of using an outlier test to
disregard a data point. In this article, we use
such a test — the Weisberg t-test — to
objectively identify an outlier as part of a
statistical evaluation of small data sets. For
process validation purposes, if the Weisberg
t-test identifies no outliers, the data can be
claimed to be consistent based on an
objective statistical method.

This article describes the application of the
Weisberg t-test to data from five
conformance runs. We examine the ability of
the test to demonstrate process consistency.
Subsequent uses of this test would include
checking a suspect data point from lot six
with the previous five, or lot seven from the
previous six, for instance. The Weisberg t-test
could also be used during a retrospective
review of data sets. For example, an earlier
value may stand out as a possible outlier, but
only after subsequent data show a pattern that
distinguishes it as a possible outlier. As
standard practice, we advocate an
investigation of the causes of such statistical
differences. 

As mentioned, at 15 data points, the
individuals control chart for each point
becomes the preferred tool for detecting

discordant observations and for showing
process consistency (defined as the absence
of discordant observations). If the data are
available in subgroups, then an averages
control chart is preferred.

Testing for a Single Outlier
In this article, we refer to an outlier as a 
datum that appears not to belong to the same
group as the rest of the data. That datum
measurement may seem either too large or too
small in relation to the general pattern of the
rest of the data. The method we propose
applies to a single outlier, and is similar to the
traditional t-calculated (tcalc) form of the
general t-test statistic (Equation 1) (10,11).

[1]

The test hypothesis (Ho or null) can be stated
as: The suspected value is not an outlier. Its
alternative (Ha or alternative) is stated as: The
suspected value is an outlier.

Working with reduced data. The entire set of
data should not be used to estimate the
standard error (SE). Such estimates would
be biased if the suspected outlier were
included. The estimate of variation would be
inflated, and the estimate of the arithmetic
mean would be biased toward the outlier. 

The logic of the Weisberg t-test. After
computing the estimates without the
suspected outlier, the Weisberg t-test
statistic for the suspected outlier (denoted 
by yi) is given in Equation 2,

[2]

where n is the sample size, y-i
— denotes the

computed sample mean, s-i is its standard
deviation after the withdrawal of yi, the
suspect outlier.

The logic of the Weisberg t-test is that the
numerator (yi�y-i

—  ) compares the mean value
y-i
— to the suspected outlier value yi.
Furthermore, the denominator s-i is the
classic sample standard deviation. 

In Equation 2, the factor denoted by 

adjusts the calculated t-value (tcalc) downward
and is more conservative for small samples.
Specifically, the above factor is identical to

1 + h
1
2

n – 1
n

1
2

tcalc =

n–1
n

1
2

× y
i
–y

–i

s–i

tcalc =
Estimate of the difference

Standard error of the difference

where h is the leverage matrix (3); that is

because the data are reduced by one
observation. The estimated SE, of the 
mean y-i

— is

[3]

which makes Equation 2 equivalent to

[4]

The tcalc (as found above) is then compared
to percentiles of a t-distribution at the 
� significant level with (n�2) degrees of
freedom. 

Probability and degrees of freedom. Table 1
shows the t-critical (tcrit) values at three
different α values, in which the df are two
less than the sample size. If the absolute
value of tcalc is less than tcrit, the point is not
an outlier. Table 1 can be generated (in
Microsoft Excel or another spreadsheet
program) for other values of � (alpha error
rate) and degrees of freedom using the
inverse of the Student’s t-distribution
(TINV) function. The TINV function
requires two arguments. They are: “the
probability associated with a one-tailed 
t-distribution” and the “degrees of freedom.”
The critical t-values in the body of Table 1
are derived using the Excel function:
TINV(reference to value at the top of the
column as a proportion, times two; and the
value for the degrees of freedom from the
first column where degrees of freedom is
two less than the number of samples). In
Excel, the TINV function gives the t-value
for two tails, placing one-half of the � value
in each tail, whereas the Weisberg t-test is a
one-tail test. That is why the � values must
be multiplied by two when using the TINV
spreadsheet function. When using a
published two-sided Student t-table, the
results are obtained by shifting one column
to the right, that is, by using (n�2) degrees
of freedom, as shown in Table 1.

Identifying a Biotech Outlier
As a real-world example, we use a data set
from monitoring a large chromatography
column in a recombinant protein purification
process. Table 2 presents a representative set
of such data. Step yield (percent recovery),
target protein concentration, a purity assay,

tcalc =
y

i
– y

–i

SE y
–i

SE y
– i

= s–i 1 + h
1
2

h = 1
n – 1

Figure 1. The operating characteristic curves
for a variety of outlier tests are created by
repeatedly drawing four values from a
population of known mean and S, with a
fifth value taken from a population with a
known shift in mean.
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Two alternative approaches to test for
outliers include the regression approach
(Alternative 1) and the ANOVA approach
(Alternative 2). The results of the two
alternatives are compared with the
Weisberg t-test in Table 3. The entire data
set (n�5) is used for these methods, but
the results are identical to those obtained
using Equation 2 or Equation 4.

Alternative 1: The Regression Approach
An outlier test similar to Equation 2 exploits 

the full data set by testing the hypothesis
that �1�0 using a simple linear model: 

[5]

in which y is the expected value given Xi.
The term Xi is coded 1, if y is the suspected
outlier (y�yi) and 0 otherwise. In this
model, �0 estimates the overall mean, and
�1 represents the deviation from the mean
for the rest of the data. The t statistic for
testing �1�0 against a two-sided
alternative is the appropriate statistic to use
(12). Under the assumption of normal error,
the t is a Student t with n�k�1 degrees of
freedom, in which k�1 (due to �1).
Therefore,

[6]

in which b1 and SE(b1) are sample
estimates of �1 and its standard error (SE).

Alternative 2: The One-Way ANOVA Model
A similar coding of the full data leads to the
same test through the use of one-way
analysis of variance (ANOVA). The model
is:

[7]

in which y is the expected value, µ is the
overall mean, � represents two classes or
categories defined by 0 and 1 depending
on whether the observation is a suspected
outlier (�1) or not (�0). The degrees of
freedom are (n��1), in which n� are the
two levels of �, therefore (n��1)�(2�1).
Consequently, the degrees of freedom for
the error is (n�1) � (n��1). The ANOVA
table is provided below.

The df column in the ANOVA table defines
the degrees of freedom; the Fcalc is 

equivalent to tcalc and have identical
probability of discerning an outlier (the 
p-value); that is, Fcalc equals the t2calc
obtained in the Weisberg t-test and in the
regression approach. Moreover, estimates
of y-i

– and y are obtained by applying
estimable functions, that is

[8]

where m, a0, and a1 can be obtained from
the solution vector of the model in 
Equation 7. The elements of the solution
vector — m, a0, and a1 — represent
nonunique estimates of the intercept (m),
the effect of observations without the
suspected value (a0), and the effect of the
suspected value (a1). A test identical to the
Weisberg t-test and the regression-based
test is obtained by computing the difference
between the two estimable functions in
Equation 8. The resulting difference is also
estimable (12). Thus,

[9]

provides an equivalent test to the Weisberg
t-test and the regression-based test (3,5).
The standard error SE(a0�a1) is

[10]

The Weisberg t-test, the regression-based
test, and the ANOVA model are similar
because in all three methods, the same
quantity (in absolute terms) is represented
by the estimated slope �1 of Equation 5,
the numerator (a0�a1) in Equation 9, and
the numerator 

of Equation 4. All three methods also have
the same SE. The results of the outlier tests
of the three methods are compared in
Table 3 using the data from Table 2.

Because of their simplicity, the above
calculations can be performed in a
spreadsheet package that has even
limited statistical capability. The SAS
code needed to run these methods is
listed in the box to the left (13). They can
also be obtained from Louis Munyakazi,
louism@amgen.com.

yi – y–i

SE a0 – a1 = σ 1
n + 1

tcalc =
a0 – a1

SE a0 – a1

y
–i

= m +a0 and y
i

= m + a1

y = µ + α with var(y) = σ2

tcalc =
b1

SE b1

y = β0 + β1X
i
with var y = σ2

Degrees of Sum of Mean
Source Freedom Squares Square Fcalc

Model 1 SSmodel MSmodel
a

Error n�2 SSerror MSerror

Corrected total n�1 SStotal

aMSE is mean square error.

MSmodel

MSE

ANOVA Table. A one-way analysis of variance model (Alternate 2) delivers the same
results as the Weisberg t or regression-based tests: the Fcalc � t2calc ; also the 
p-values are identical (Table 3).

The Data
data o;
input y @@;
x=0;
if _n_=3 then x=1; 
datalines;
17.5 17.4 30.2 22.2 27.0
;
run;
proc print;
run;

Alternative 1: Linear Regression
proc reg alpha=.1;
A: model y=x; 
*test H0: b=0;
B: model y=t/influence;
*look for R-Studentized Residual;
output out=hat h=hmatrix;

title3 Method Uses ALL the Data;
title4 Simple Linear Regression Model;
run;

Alternative 2: One-Way ANOVA
proc glm data=o alpha=.1;
class x;
model y = x/ss3 solution;
output out=g h=hamtrix;

estimate ‘Estimate of mu’ intercept 1 x 1;
estimate ‘Estimate of outlier’ intercept 1 x 0 1;
estimate ‘Weisberg test’ x -1 1; 
title3 Method Uses ALL the Data;
title4 Through Linear Model and Contrast;
run;

SAS Codes for the Alternative Methods
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host cell protein (HCP) concentration, and
processing time are the primary indicators of
step consistency. The data appear to be
consistent across the five lots, except in 
Lot 3, the HCP is apparently high and might
be inconsistent with the other four data
points. 

The Weisberg tcalc for HCP in our
example is 1.796. Comparing that number
with the tcrit values (Table 1), for n�5,
��0.05, the tcalc is less than the tcrit (2.353),
therefore the data point is not an outlier, and
the five data points are consistent. So the
subjective judgment used to decide that the
data point might be discordant is followed by
the application of a statistical tool to give an
objective assessment.

Choosing an � value of 0.05 means that when
the process actually has no outliers, we are
willing to accept a 5% chance of a false
positive — a 5% chance that a point
identified as discordant by the 
Weisberg t-test is not, actually, an outlier.
Accepting that rate means accepting
unnecessary investigations 5% of the time.
If the � value is reduced to avoid those
investigations, the � value rises, which
means false negatives — the test fails to
identify a discordant value. In our
application, a � error occurs when the test
fails to detect an outlier when one is actually
present. We choose to set � at 0.05 and are
willing to perform more frequent

investigations (as a result of false positives)
to keep the � error rate low. At ��0.05,
n�5, the � error is a reasonable 0.31 for
detecting a shift of three standard deviations
(Figure 1). That rate is significantly less than
the more commonly used outlier tests
(Dixon and Grubbs), which yield � errors of
approximately 0.77 as can be seen in 
Figure 1 (4,5).

The set of operating characteristic (OC)
curves in Figure 1 shows a variety of outlier
tests constructed by simulating a data set of
5,000 from which four samples were drawn.
A fifth datum was randomly taken from a
data set, which was shifted by a given
number of standard deviations. To detect a
standard deviation change of three, the z-test
(the basis for control charts) is clearly the
most sensitive, with a � error of 0.08. For
the purposes of comparing outlier tests, the
z-test is presented here as a one-sided test;
the two-sided z-test is the basis for control
charts. The control chart, however, requires
a large data set or a good estimate of the
variance of the data. When those conditions
are available, an individuals control chart (or
a control chart of averages) is the

recommended method. When a large data
set or a good estimate of the variance is not
available — for five conformance runs with
little relevant data from previous scales, for
example — the Weisberg t-test is clearly the
next best available tool. 

The Bonferroni correction is used for some
statistical comparisons. For example, it is used
for multiple comparisons (the “family” of
comparisons) by dividing the Type 1 error
among all comparisons, so that the overall
Type 1 error rate of the family does not
exceed a desired level. In our example, we use
a single hypothesis test for one visually
suspected outlier, rather than testing a
hypothesis of no outliers by performing
multiple tests on every data point versus the
remaining set. Because multiple comparisons
are not contemplated in our example, we don’t
use the Bonferroni correction.

One-sided or two. A final point needs to be
made about the one-sided versus the two-
sided Weisberg t-tests for outliers. Because
an outlier is initially detected as being the
farthest from the central tendency (the
mean) of the data, the outlier will be either

Degrees of Alpha Error Rate
Freedoma 0.01 0.05 0.10

3 4.541 2.353 1.638
4 3.747 2.132 1.533
5 3.365 2.015 1.476
6 3.143 1.943 1.440
7 2.998 1.895 1.415
8 2.896 1.860 1.397
9 2.821 1.833 1.383

10 2.764 1.812 1.372
11 2.718 1.796 1.363
12 2.681 1.782 1.356
13 2.650 1.771 1.350
14 2.624 1.761 1.345
15 2.602 1.753 1.341
16 2.583 1.746 1.337
17 2.567 1.740 1.333
18 2.552 1.734 1.330

aDegrees of freedom are n–2 of sample size.

Table 1. The tcrit values for three different
levels of � errors and the degrees of
freedom (two less than the sample size)

Parameter Lot 1 Lot 2 Lot 3 Lot 4 Lot 5

Step time (h) 50 49 48 51 51
Step yield (%) 82 83 89 88 89
Concentration (g/L) 13.8 13.6 14.1 13.8 14.0
Purity (%) 97.1 97.2 97.6 97.3 97.5
HCP (ppm) 17.5 17.4 30.2 22.2 27.0

Table 2. A representative set of data from the first five lots of a purification process for a
recombinant protein in a large chromatography column; the parameters are the primary
indicators of step consistency.

Number of Estimate
Method Observations � Standard Error Calculated t p-value

Weisberg t-test (n�1) � 4 21.03 � 4.57 1.796 0.1704
(reduced data)

Alternate 1 n � 5 9.18 � 5.11a 1.796 0.1704
Regression test
(full data)

Alternate 2 n � 5 21.03 � 2.28b 1.796 0.1704
ANOVA test 30.20 � 4.57b

(full data) 9.18 � 5.11b

aRepresents estimates of �1 (deviation from the mean of the n�1 data)
bRepresents estimates of m�a0, m�a1, and a0�a1 (mean of reduced data, suspected outlier,
and their difference, � corresponding SEs)

Table 3. A comparison of the Weisberg t-test with two other methods for 
obtaining identical tcalc values: the regression-based method (Alternate 1) and the
ANOVA-based method (Alternate 2); the host cell protein (HCP) observations for testing
step consistency are the responses being tested.

Continued on page 58
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example, the test fits the needs for
evaluating biotechnology process data. 

The Weisberg t-test can be applied for
determining the internal consistency of small
data sets and can also be useful in process
validation. When validating a process, a
protocol with preapproved acceptance
criteria is required. For key performance
parameters, numerical limits for specific
attributes must be defined and met.
Typically, however, many secondary
parameters may not have predefined
numerical limits, but they are still expected
to be internally consistent during the
validation runs. For example, during scale-
up, the mean of a given output parameter can
shift up or down, but if that does not affect
product quality, the variation may be
perfectly acceptable. To validate that a
process is performing consistently, the values
of that parameter should be similar for three
to five runs. The Weisberg t-test is a useful
tool that adds statistical objectivity to the
claim that a process is “consistent.” BPI
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higher or lower than the mean. The
Weisberg t-test determines whether the
“outlier” is larger if it is to the right of the
mean (on a number line) or smaller if it is to
the left of the mean (on a number line). The
test does not show the differences without
reference to the direction of that difference;
therefore, the Weisberg t-test is a one-sided
test, and the resulting tcrit values in the table
must reflect that.

Alternative methods. Two other methods can
be used to obtain identical tcalc values. One
uses regression (Alternative 1 in Table 3),
and one uses analysis of variance (ANOVA)
(Alternative 2 in Table 3). These methods
are discussed in the “Alternative Methods
for Determining tcalc” sidebar, and the
results from those tests are compared with
the Weisberg tcalc values in Table 3.

A Superior Tool
The Weisberg t-test has a low � error rate
(especially when used with a higher � error
rate) for small data sets. It is a superior,
objective tool for showing consistency
within small data sets. As shown in our
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1.3.6.7.2. Upper Critical Values of the Student's-

t Distribution 

How to 

Use This 

Table 

This table contains the upper critical values of the Student's t-

distribution. The upper critical values are computed using the 

percent point function. Due to the symmetry of the t-

distribution, this table can be used for both 1-sided (lower and 

upper) and 2-sided tests using the appropriate value of .  

The significance level, , is demonstrated with the graph 

below which plots a t distribution with 10 degrees of freedom. 

The most commonly used significance level is = 0.05. For a 

two-sided test, we compute the percent point function at /2 

(0.025). If the absolute value of the test statistic is greater than 

the upper critical value (0.025), then we reject the null 

hypothesis. Due to the symmetry of the t-distribution, we only 

tabulate the upper critical values in the table below.  

Given a specified value for : 

1. For a two-sided test, find the column corresponding to

/2 and reject the null hypothesis if the absolute value 

of the test statistic is greater than the value of in 

the table below.  

2. For an upper one-sided test, find the column

corresponding to and reject the null hypothesis if the

test statistic is greater than the tabled value.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PPF
http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PPF


3. For an lower one-sided test, find the column

corresponding to and reject the null hypothesis if the

test statistic is less than the negative of the tabled value.

Upper critical values of Student's t distribution with degrees of 

freedom  
Probability of exceeding the critical value 

0.10 0.05   0.025 0.01   0.005   0.001 

  1. 3.078   6.314  12.706  31.821  63.657 318.313 

  2. 1.886   2.920   4.303   6.965   9.925  22.327 

  3. 1.638   2.353   3.182   4.541   5.841  10.215 

  4. 1.533   2.132   2.776   3.747   4.604   7.173 

  5. 1.476   2.015   2.571   3.365   4.032   5.893 

  6. 1.440   1.943   2.447   3.143   3.707   5.208 

  7. 1.415   1.895   2.365   2.998   3.499   4.782 

  8. 1.397   1.860   2.306   2.896   3.355   4.499 

  9. 1.383   1.833   2.262   2.821   3.250   4.296 

 10. 1.372   1.812   2.228   2.764   3.169   4.143 

 11. 1.363   1.796   2.201   2.718   3.106   4.024 

 12. 1.356   1.782   2.179   2.681   3.055   3.929 

 13. 1.350   1.771   2.160   2.650   3.012   3.852 

 14. 1.345   1.761   2.145   2.624   2.977   3.787 

 15. 1.341   1.753   2.131   2.602   2.947   3.733 

 16. 1.337   1.746   2.120   2.583   2.921   3.686 

 17. 1.333   1.740   2.110   2.567   2.898   3.646 

 18. 1.330   1.734   2.101   2.552   2.878   3.610 

 19. 1.328   1.729   2.093   2.539   2.861   3.579 

 20. 1.325   1.725   2.086   2.528   2.845   3.552 

 21. 1.323   1.721   2.080   2.518   2.831   3.527 

 22. 1.321   1.717   2.074   2.508   2.819   3.505 

 23. 1.319   1.714   2.069   2.500   2.807   3.485 

 24. 1.318   1.711   2.064   2.492   2.797   3.467 

 25. 1.316   1.708   2.060   2.485   2.787   3.450 

 26. 1.315   1.706   2.056   2.479   2.779   3.435 

 27. 1.314   1.703   2.052   2.473   2.771   3.421 

 28. 1.313   1.701   2.048   2.467   2.763   3.408 

 29. 1.311   1.699   2.045   2.462   2.756   3.396 

 30. 1.310   1.697   2.042   2.457   2.750   3.385 

 31. 1.309   1.696   2.040   2.453   2.744   3.375 

 32. 1.309   1.694   2.037   2.449   2.738   3.365 

 33. 1.308   1.692   2.035   2.445   2.733   3.356 

 34. 1.307   1.691   2.032   2.441   2.728   3.348 

 35. 1.306   1.690   2.030   2.438   2.724   3.340 

 36. 1.306   1.688   2.028   2.434   2.719   3.333 

 37. 1.305   1.687   2.026   2.431   2.715   3.326 

 38. 1.304   1.686   2.024   2.429   2.712   3.319 

 39. 1.304   1.685   2.023   2.426   2.708   3.313 

 40. 1.303   1.684   2.021   2.423   2.704   3.307 



Upper critical values of Student's t distribution with degrees of 

freedom  
Probability of exceeding the critical value 

0.10 0.05   0.025 0.01   0.005   0.001 

 41. 1.303   1.683   2.020   2.421   2.701   3.301 

 42. 1.302   1.682   2.018   2.418   2.698   3.296 

 43. 1.302   1.681   2.017   2.416   2.695   3.291 

 44. 1.301   1.680   2.015   2.414   2.692   3.286 

 45. 1.301   1.679   2.014   2.412   2.690   3.281 

 46. 1.300   1.679   2.013   2.410   2.687   3.277 

 47. 1.300   1.678   2.012   2.408   2.685   3.273 

 48. 1.299   1.677   2.011   2.407   2.682   3.269 

 49. 1.299   1.677   2.010   2.405   2.680   3.265 

 50. 1.299   1.676   2.009   2.403   2.678   3.261 

 51. 1.298   1.675   2.008   2.402   2.676   3.258 

 52. 1.298   1.675   2.007   2.400   2.674   3.255 

 53. 1.298   1.674   2.006   2.399   2.672   3.251 

 54. 1.297   1.674   2.005   2.397   2.670   3.248 

 55. 1.297   1.673   2.004   2.396   2.668   3.245 

 56. 1.297   1.673   2.003   2.395   2.667   3.242 

 57. 1.297   1.672   2.002   2.394   2.665   3.239 

 58. 1.296   1.672   2.002   2.392   2.663   3.237 

 59. 1.296   1.671   2.001   2.391   2.662   3.234 

 60. 1.296   1.671   2.000   2.390   2.660   3.232 

 61. 1.296   1.670   2.000   2.389   2.659   3.229 

 62. 1.295   1.670   1.999   2.388   2.657   3.227 

 63. 1.295   1.669   1.998   2.387   2.656   3.225 

 64. 1.295   1.669   1.998   2.386   2.655   3.223 

 65. 1.295   1.669   1.997   2.385   2.654   3.220 

 66. 1.295   1.668   1.997   2.384   2.652   3.218 

 67. 1.294   1.668   1.996   2.383   2.651   3.216 

 68. 1.294   1.668   1.995   2.382   2.650   3.214 

 69. 1.294   1.667   1.995   2.382   2.649   3.213 

 70. 1.294   1.667   1.994   2.381   2.648   3.211 

 71. 1.294   1.667   1.994   2.380   2.647   3.209 

 72. 1.293   1.666   1.993   2.379   2.646   3.207 

 73. 1.293   1.666   1.993   2.379   2.645   3.206 

 74. 1.293   1.666   1.993   2.378   2.644   3.204 

 75. 1.293   1.665   1.992   2.377   2.643   3.202 

 76. 1.293   1.665   1.992   2.376   2.642   3.201 

 77. 1.293   1.665   1.991   2.376   2.641   3.199 

 78. 1.292   1.665   1.991   2.375   2.640   3.198 

 79. 1.292   1.664   1.990   2.374   2.640   3.197 

 80. 1.292   1.664   1.990   2.374   2.639   3.195 

 81. 1.292   1.664   1.990   2.373   2.638   3.194 

 82. 1.292   1.664   1.989   2.373   2.637   3.193 

 83. 1.292   1.663   1.989   2.372   2.636   3.191 

 84. 1.292   1.663   1.989   2.372   2.636   3.190 

 85. 1.292   1.663   1.988   2.371   2.635   3.189 

 86. 1.291   1.663   1.988   2.370   2.634   3.188 

 87. 1.291   1.663   1.988   2.370   2.634   3.187 

 88. 1.291   1.662   1.987   2.369   2.633   3.185 



Upper critical values of Student's t distribution with degrees of 

freedom  
Probability of exceeding the critical value 

0.10 0.05   0.025 0.01   0.005   0.001 

 89. 1.291   1.662   1.987   2.369   2.632   3.184 

 90. 1.291   1.662   1.987   2.368   2.632   3.183 

 91. 1.291   1.662   1.986   2.368   2.631   3.182 

 92. 1.291   1.662   1.986   2.368   2.630   3.181 

 93. 1.291   1.661   1.986   2.367   2.630   3.180 

 94. 1.291   1.661   1.986   2.367   2.629   3.179 

 95. 1.291   1.661   1.985   2.366   2.629   3.178 

 96. 1.290   1.661   1.985   2.366   2.628   3.177 

 97. 1.290   1.661   1.985   2.365   2.627   3.176 

 98. 1.290   1.661   1.984   2.365   2.627   3.175 

 99. 1.290   1.660   1.984   2.365   2.626   3.175 

100. 1.290   1.660   1.984   2.364   2.626   3.174 

1.282   1.645   1.960   2.326   2.576   3.090 
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